
The need for Runtime 
Restrictions

January, 2024



2

Challenge

What the Service 
(Network) can do [Lab]

What the deployed 
Service (Network) is 

configured to do

What we expose via 
Network APIs

What can the 
network can do 

right now

Network API 
Invocation 

Result (Service 
Delivery)

A. What is 
possible?
What the 
network can do. 

B. What the network will 
(is configured to) do

- Footprint and 
capabilities (FC)

C. What the 
network will expose 
(FC based on who is 
asking)*

D. What the network 
may provide for the 

device right now (FC 
based on who is asking, 

device location and 
network state)*

Result

Several subprojects have open issues 
signaling the need to communicate 
operator implementation & deployment 
limits. For example:

• Optional parameters imposed by an API 
Producer (Operator)

• Supported operations and features at 
time of API invocation

Layers of Capabilities

Reference issues:

• [Commonalities->Release Management] Define Mandatory end points URL in each project

• [Identity and Consent Management] Align securitySchemes and security of CAMARA API specs 
[Closed]

• [DeviceStatus] Support with Identifier [now Discussion 48]

• [SimSwap] Remove MSISDN from request body [Closed]

• [QualityOnDemand] Add support for DSCP for QoD sessions

https://github.com/camaraproject/Commonalities/issues/63
https://github.com/camaraproject/IdentityAndConsentManagement/issues/57
https://github.com/camaraproject/IdentityAndConsentManagement/issues/57
https://github.com/camaraproject/DeviceStatus/issues/46
https://github.com/camaraproject/SimSwap/issues/58
https://github.com/camaraproject/QualityOnDemand/issues/173


3

Example Scenario

1. QualityOnDemand API CreateSession Operation has 
required attribute ‘device’

2. Device properties must be at least one of the 
following
• PhoneNumber
• NetworkAccessIdentifier
• DeviceIpv4Addr
• Ipv6Address

3. While there is a minimum requirement of 1 property 
to be provided, schema doesn’t describe which one(s) 
maybe supported by an operator

4. Operator / Aggregator (API Producer) may only 
support subset of these options

 i.e. PhoneNumber, Ipv6Address

There is currently no mechanism 
to relay to API consumers which 

optional 
capabilities/features/parameters 

are supported and enabled by API 
Producers and API Consumers!

Options are either for operators to 
modify Service API, or identify 

least common denominator, both 
of which defeat goal of CAMARA!



4

Scenarios that can benefit

1. Supported Properties (e.g. Device Identifier)

2. Operations Supported / Enabled per Operator, Device, Policy, Subscription, Network State, etc.

3. Regulatory limitations (e.g. Increased Minimum Radius, reduced Maximum Radius)

4. Supported security schemes per flow type

5. Disabled capabilities due to Location and/or Network status



5

Survey

IETF RFC 8008 – Content Delivery Network Interconnection (CDNI) Request Routing: Footprint 
and Capabilities Semantics

3GPP TS 29.500 – Extensibility Mechanisms

TMF 630 - REST API Design Guidelines– Part 2 Describes Extension Patterns

https://www.rfc-editor.org/rfc/rfc8008.html


6

Ground Rules and Proposal

A CAMARA API processed 
against an API provider’s 

Runtime Restrictions MUST 
result in valid requests for the 

API and associated schema

1. Any instance may have metadata (deprecated, readOnly) or general (type, 
enum, const) restrictions.

2. Use JSON Schema Validation for defining ‘Restrictions’ and apply to primitive 
types “numeric”, “strings”, “array”, “object [instance, excluded properties]”

3. Parameters may be restricted as follows:
 Deprecate use of a parameter. This can only be done if the original schema does not have 'required: true' for this 

parameter specification.

 Mandate use of an optional parameter. This can only be done if the original schema does not have 'deprecated: 
true' for this parameter specification.

 Allow empty values. This can only be TRUE if the schema did not explicitly specify its value as false.

4. Restrictions may apply to subschemas that are applied with logic keywords 
"anyOf" or "oneOf“

5. Setting a referenced item to 'readonly', effectively noting that its value will be 
ignored by the server

6. If the API producer doesn't implement all operations defined in CAMARA API 
in the respective version, such operations can be restricted by either 
declaring the operation
 'deprecated', as long as the original schema did not explicitly specify its value as false,

 'not available', for temporary unavailability

 or 'not implemented', if the operation hasn't been implemented.

The Runtime Restrictions 
interface MUST never pass 

limitations that result in invalid 
API request.



7

Potential Use 

Additional Work is needed!
While ‘Runtime Restrictions’ provide a programmable way to 

identify restrictions applied by an API provider, it lacks the ability 
to group these restrictions for quickly turning on/off and 

associate with footprints.

Example Structure



8

S c e n a r i o  1

S c e n a r i o  2

ipv4Addresses and 

NAIs are not 

supported!

Minimum radius 

supported is 3000 

[meters] vs. 2000

Examples



9

API Submission Template (DRAFT)

Field Description

API family name Capability and Runtime Restrictions

API family owner T-Mobile US

API summary

CAMARA Service APIs are designed with many optional parameters and features.  It’s unreasonable to expect 
each API Producer (i.e. Operator) to support all these optional parameters.  In addition, some supported features 
and parameters may not be enabled at Service API invocation time, based on network state, who might be 
invoking and/or for whom/which device, location, …)  There is currently no mechanism to exchange such 
information with API Consumers (i.e. Application Service Providers (ASP)/Developers/Aggregators) and keep the 
CAMARA APIs the same across the Exposure Gateways.
API Family is intended to cover the following areas:
1. Exchange of runtime restrictions (i.e. not supported parameters/features)
2. Exchange of capabilities (i.e. enabled/not enabled a set of parameters/features)
3. Topology exchange (i.e. abstraction) for capability-footprint association
For the first area following examples can be given:
1. Device identifier in QoD can be of type Phone Number, IPv4 Address, IPv6 Address, Network Access 

Identifier (NAI).  One operator may support all of these identifiers in which case there will not be a need 
to list any restrictions towards the schema in the QoD API, however another operator supports only 
Phone Number, thus will need to inform ASPs not to use them.

2. If there is a regulation specific maximum accuracy level that must be set greater than the minimum 
Radius defined in ‘location-retrieval.yaml’, operator must be able to overwrite this new minimum.

For the capabilities following example can be given:
1. While the operator may not support only one of the default set of QoD Profiles, at the time of invocation, 

one ore more of the supported QoD profiles may not be available due to network state and/or location.  
Invocation of QoD with not-enabled QoD profile will result in error and lead to bad developer experience.  
Operators must be able to efficiently exchange this information.

Technical viability Yes (reuse of JSON Validation Schema with little to no impact to current API designs)

Commercial viability This is not a product, but rather Service Management API which falls under CAMARA purview.

YAML code available? Yes (for runtime restrictions)

Validated in lab/productive 
environments? In progress

Validated with real 
customers? No

Validated with operators? No

Supporters in API Backlog 
Working Group




	Presentation
	Slide 1
	Slide 2: Challenge
	Slide 3: Example Scenario
	Slide 4: Scenarios that can benefit
	Slide 5: Survey
	Slide 6: Ground Rules and Proposal
	Slide 7: Potential Use 
	Slide 8: Examples
	Slide 9: API Submission Template (DRAFT)
	Slide 10


