
Issue 133 – RFC9457 Adoption -
URN Option

March, 2024

2

Why adopt RFC 9457?

• We need a future proof, extensible schema for problem details (beyond pure HTTP status codes)
• There is nothing out there in the industry, but RFC 9457 is promising and already adopted by some

organizations
• RFC 9457 would allow the use of HTTP Standard, CAMARA specific and even API specific problem types

side-by-side in a IETF standardized way
• With RFC 9457 CAMARA wouldn’t add another proprietary error format for developers to deal with

3

Other formats and RFC 9457
(referenced in Issue 31)

RFC 9457 Properties / Company Link type (URI) status - the HTTP status code
title - a short, human-readable
summary of the problem type

detail - a human-readable
explanation specific to this
occurrence of the problem.

instance - string containing a URI
reference that identifies the
specific occurrence of the
problem

Google
https://cloud.google.com/apis/d
esign/errors

proto3 - derived during payload
decode
http - details (struct) property's
"@type" property

proto3 - code property (follow
http values but they use their
own codes)
http mapping - code property

proto3 - no equivalent in header
http mapping - status property

message property for proto3 and
http

Meta

https://developers.facebook.co
m/docs/whatsapp/cloud-
api/support/error-codes/#error-
codes type property (string)

code property (they use their
own codes)

part of their message property
which is "Combination of the
error code and its title." details property

messaging_product and
fbtrace_id

Amazon EC2

https://docs.aws.amazon.com/A
mazonS3/latest/API/ErrorRespon
ses.html,
https://docs.aws.amazon.com/A
WSEC2/latest/APIReference/erro
rs-overview.html

code as a string that is given
subcodes using a '.' notation message property

Azure

https://learn.microsoft.com/en-
us/rest/api/storageservices/stat
us-and-error-codes2 Error Code (String)

recommends using the http
status code (not in the body) Error Code (String) message property

additional information that
varies and may be provided

Azure - Table Storage (Odata
Spec v 4 Section 19)

https://learn.microsoft.com/en-
us/rest/api/storageservices/stat
us-and-error-codes2

code (it is a substatus of the http
error code) message property details sub structure target

Analysis >>>>>>

Inconsistent when present but
format is basically a string (url or
just a string); otherwise derived
during decoding (Google proto3)

Code property name is
consistent but format and values
are not.

Some note that if the HTTP
status code is sufficient, use it.

No consistent name or presence.
String or struct data type is used.
Values vary (as expected)

Present as a struct or string and
either called message or details.

Present occasionally but some
services respond back with
product and a trace (hiding
instance info indirectly)

No clear direction from others

https://github.com/camaraproject/Commonalities/issues/31
https://cloud.google.com/apis/design/errors
https://cloud.google.com/apis/design/errors
https://developers.facebook.com/docs/whatsapp/cloud-api/support/error-codes/#error-codes
https://developers.facebook.com/docs/whatsapp/cloud-api/support/error-codes/#error-codes
https://developers.facebook.com/docs/whatsapp/cloud-api/support/error-codes/#error-codes
https://developers.facebook.com/docs/whatsapp/cloud-api/support/error-codes/#error-codes
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2
https://learn.microsoft.com/en-us/rest/api/storageservices/status-and-error-codes2

4

Issue 133 – Proposal Basis

The type property definition (URI) in the RFC is too broad, becoming problematic without restriction. This is compounded by RFC 9457:

• encouraging use of documentation when the URI is a locator (URL or URN that location services can use).

• noting risks of relative URIs without strong guidance

Some implementations resolved this in different ways, restricting property values, while remaining compliant.

From https://opensource.zalando.com/restful-api-guidelines/#176

"Note: Problem type and instance identifiers in our APIs are not meant to be resolved. RFC 9457 encourages that problem types are URI
references that point to human-readable documentation, but we deliberately decided against that."

This does not resolve Relative URI concerns.

From https://www.belgif.be/specification/rest/api-guide/#error-handling

"Note that using href instead of type for documentation intentionally deviates from the recommendation in the RFC. href allows use of a
URL for documentation purposes that may change over time, while type can be specified as a URN that must remain stable. This is
especially useful for API-specific problem types for which the documentation URL may depend on technical aspects, like deployment
environment."

This resolves both issues above and is the basis for this proposal.

https://opensource.zalando.com/restful-api-guidelines/#176
https://tools.ietf.org/html/rfc9457
https://www.belgif.be/specification/rest/api-guide/#error-handling

5

type property usage recommendations

Recommendation A - The type property is restricted to URNs as defined in RFC 8141 from a managed URN namespace managed by CAMARA.
These URNs will not be relative nor are they intended to resolve to locators.

This creates a persistent, location-independent resource identifier. It avoids issues raised by the RFC and others and is RFC compliant. It does
not follow the RFC’s encouragement of using locators and resolving to documentation.

Recommendation B - Developer targeted information generally describing the error or related documentation will be a URL contained in a
href (or other name*) property in the error.

This deviates from the RFC encouragement but maintains compliance. The property can be dropped for production systems.

* - TMF had (a still open) issue https://projects.tmforum.org/jira/browse/AP-2628 created in March 2021, which wasn’t considered for the v5

of TMF 630 (the Guidelines) and now to be closed. They compared the TMF and RFC formats, showing a parameter “referenceError”
which is “URI of problem type documentation”

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcheckpoint.url-protection.com%2Fv1%2Furl%3Fo%3Dhttps%253A%2F%2Fprojects.tmforum.org%2Fjira%2Fbrowse%2FAP-2628%26g%3DYThkOTcyNTc1MTE2ZTg2Mg%3D%3D%26h%3DNWYyYTIwOTFlMjA4NWMxYTA3Y2IwOWYwOTBkZTcxMTUwMGViNTNmMTA1NzNjZjA3OTU3MzExZGI2MDc4MzgxYg%3D%3D%26p%3DYzJ1OnRtb2JpbGV1c2E6YzpvOjMxMWVhZjMzMjYyNzYyMDM3NTYyMGNlYTQxODUwZjM5OnYxOmg6VA%3D%3D&data=05%7C02%7Clyle.t.bertz%40t-mobile.com%7C392a5c4193f84165ad2c08dc3a0f4e01%7Cbe0f980bdd994b19bd7bbc71a09b026c%7C0%7C0%7C638449084682852559%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=GuWgK6YjkIxGGi3Ng1O4Zahn332LxLHKXsgx0Uwy3Ik%3D&reserved=0

6

URN Namespace Management

Proposed format: urn:camara:<..>

The type property’s value is interpreted as follows:
• No type, aka “about:blank” – this type is for simple errors where no additional information needs to be provided. This information might not come from a CAMARA API but other servers

in the application stack or path

o HTTP status code only, without any additional semantic
o If Title is provided, it must be the one defined for the HTTP status code, no deviations.

o Status property may be mandatory
• CAMARA wide defined problem types: "type" = "urn:camara:common.errors…"

o A fixed title
o The HTTP status code for it to be used with
o May have problem type specific extensions

• CAMARA API specific problem types: "type" = "urn:camara:<api-name>.errors…"
o A (fixed) title (which does not need to have the API name in it again)
o The HTTP status code for it to be used with
o May have problem type specific extensions

For further discussion:

- addition of api specific versions in the URN (does not make sense but is possible). Cloud Event type recommends this [link]

- sub-typing via ‘/’, e.g., “/<code>/<sub-code>”, “urn:camara:common/invalid_device/ipv4addressNotFound”

- vendor or operator specific sections via ‘/’, e.g., “urn:camara:common/invalid_device/vendorspecific/operatorA/…”
- Unify CAMARA events and errors under common management in the CloudEvent type, i.e., "urn:camara:<api-name>.events…" when the type is a CAMARA defined. Otherwise follow the
Cloud Events recommendations. Per specification, the property is “a value describing the type of event related to the originating occurrence” [link] but the type is a string whose value “SHOULD
be prefixed with a reverse-DNS name. The prefixed domain dictates the organization which defines the semantics of this event type.” [link] this.

https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/primer.md#versioning-of-cloudevents
https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/spec.md
https://github.com/cloudevents/spec/blob/v1.0.2/cloudevents/spec.md

7

Other impacts to the existing base
(outside of the type property)

As originally identified at the top of the Issue thread

• Rename the current code fields to title, with further restriction that its value is the phrase defined by the HTTP Status code then the type property is not present, i.e.,
“about:blank”

• Rename the message field to detail, with no other change to how that field is currently used

• No change to the status field

Other changes that need to be incorporated as part of a PR.

1. Add an enum (string), CAMARACommonErrors, to CAMARA_Common.yaml. Its purpose is to contain the URNs of Error types that span many CAMARA APIs (sub-
projects).

2. Add the following statements to the Design Guidelines

• CAMARA wide (cross API) defined problem types (URNs) MUST be defined in CAMARA_Common.yaml file as enum values in the CAMARACommonErrors string (enum).

• CAMARA API specific problem types (URNs) MUST be defined in their respective API (yaml) file as an enum list and named ‘APISpecificErrors’. Definitions for each code
MUST be provided as part of the APISpecificErrors’ description property.

• Per RFC9457, API consumers SHOULD NOT parse the ‘detail’ for more information. This human readable explanation intended to help the client correct the problem.

• All APIs MUST use the Error schema (in its agreed form) defined in the CAMARA_Common.yaml file

8

Open Issues

Issue 1: Content-Type support: RFC 9457 specifies the Content-Type as “application/problem+json” but it may be a client concern.

Do we mandate other Content-Types in our interfaces? If so, what?

Given that this is an issue broader than just errors, should we assume we maintain our current Content-Type and adjust later once we have a
stance on Content-Types required to be supported in CAMARA?

TMF had (a still open) issue https://projects.tmforum.org/jira/browse/AP-2628 created in March 2021, which wasn’t considered for the v5 of
TMF 630 (the Guidelines). They have a proposal addressing how to enable a migration:

• “The IANA registered media type "application/problem+json" may be used to differentiate from the existing Error defined in TMF630-1 3.4 which
specifies application/json. The HTTP Content-Type header of a response may be used to explicitly indicate if the existing or RFC7807 compliant
problem details are used.

• The HTTP Accept header can be used to indicate that the client is prepared to accept an application/problem+json body of an RFC7807 response
which allows introducing the IETF standard problem details in a backwards compatible way where the clients choose the format.”

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcheckpoint.url-protection.com%2Fv1%2Furl%3Fo%3Dhttps%253A%2F%2Fprojects.tmforum.org%2Fjira%2Fbrowse%2FAP-2628%26g%3DYThkOTcyNTc1MTE2ZTg2Mg%3D%3D%26h%3DNWYyYTIwOTFlMjA4NWMxYTA3Y2IwOWYwOTBkZTcxMTUwMGViNTNmMTA1NzNjZjA3OTU3MzExZGI2MDc4MzgxYg%3D%3D%26p%3DYzJ1OnRtb2JpbGV1c2E6YzpvOjMxMWVhZjMzMjYyNzYyMDM3NTYyMGNlYTQxODUwZjM5OnYxOmg6VA%3D%3D&data=05%7C02%7Clyle.t.bertz%40t-mobile.com%7C392a5c4193f84165ad2c08dc3a0f4e01%7Cbe0f980bdd994b19bd7bbc71a09b026c%7C0%7C0%7C638449084682852559%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=GuWgK6YjkIxGGi3Ng1O4Zahn332LxLHKXsgx0Uwy3Ik%3D&reserved=0

	Presentation
	Slide 1
	Slide 2: Why adopt RFC 9457?
	Slide 3: Other formats and RFC 9457 (referenced in Issue 31)
	Slide 4: Issue 133 – Proposal Basis
	Slide 5: type property usage recommendations
	Slide 6: URN Namespace Management
	Slide 7: Other impacts to the existing base (outside of the type property)
	Slide 8: Open Issues
	Slide 9

